An Algorithm for Computing Fekete Points in the Triangle

نویسندگان

  • Mark A. Taylor
  • Beth A. Wingate
  • Rachel E. Vincent
چکیده

On the line and its tensor products, Fekete points are known to be the Gauss–Lobatto quadrature points. But unlike high-order quadrature, Fekete points generalize to non-tensor-product domains such as the triangle. Thus Fekete points might serve as an alternative to the Gauss–Lobatto points for certain applications. In this work we present a new algorithm to compute Fekete points and give results up to degree 19 for the triangle. For degree d > 10 these points have the smallest Lebesgue constant currently known. The computations validate a conjecture of Bos [J. Approx. Theory, 64 (1991), pp. 271–280] that Fekete points along the boundary of the triangle are the one-dimensional Gauss–Lobatto points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

Tensor product Gauss-Lobatto points are Fekete points for the cube

Tensor products of Gauss-Lobatto quadrature points are frequently used as collocation points in spectral element methods. Unfortunately, it is not known if Gauss-Lobatto points exist in non-tensor-product domains like the simplex. In this work, we show that the n-dimensional tensor-product of Gauss-Lobatto quadrature points are also Fekete points. This suggests a way to generalize spectral meth...

متن کامل

The Fekete-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions

In this work, we obtain the Fekete-Szegö inequalities for the class $P_{Sigma }left( lambda ,phi right) $ of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [11].

متن کامل

p-Multigrid Method for Fekete-Gauss Spectral Element Approximations of Elliptic Problems

An efficient p-multigrid method is developed to solve the algebraic systems which result from the approximation of elliptic problems with the so-called FeketeGauss Spectral Element Method, which makes use of the Fekete points of the triangle as interpolation points and of the Gauss points as quadrature points. A multigrid strategy is defined by comparison of different prolongation/restriction o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000